Обзор и тестирование видеокарты NVIDIA GeForce GTX 750 Ti на архитектуре «Maxwell»

Автор: Jordan, TheJudge
Дата: 18.02.2014
Все фото статьи

Предисловие


Без малого два года назад – в марте 2012 года – компания NVIDIA представила всему геймерскому миру свою революционную графическую архитектуру «Kepler» и первую видеокарту на её основе – GeForce GTX 680. В то время NVIDIA выступала в роли догоняющей, преследуя флагманский AMD Radeon HD 7970 своего извечного конкурента. И, нужно сказать, что релиз GeForce GTX 680 в полной мере удался, восстановив статус-кво в верхнем ценовом сегменте видеокарт. Позже вышли и более скромные по производительности и стоимости модели видеокарт на GPU NVIDIA.

Особенностью сегодняшнего анонса GeForce GTX 750 Ti и GTX 750 является тот факт, что NVIDIA впервые открывает новую графическую архитектуру «Maxwell» с младших моделей, а не с Hi-End решений, как это было прежде. И на то, как выяснилось, есть свои причины.


Давайте попробуем в них разобраться, познакомимся с первой видеокартой GeForce GTX 750 Ti и сравним её производительность с конкурентами.

1. Новая архитектура Maxwell 1.0 – курс на энергоэффективность


Итак, сегодня NVIDIA официально представляет первый графический процессор с новой архитектурой «Maxwell». Производитель особо подчёркивает, что это всего лишь первое поколение чипов на данной архитектуре. Оно выпускается по уже хорошо освоенному 28-нм технологическому процессу, и по предварительным данным будет состоять из двух чипов – GM107 и GM108. Кодовые имена, заканчивающиеся на 7 и 8, традиционно присваиваются младшим графическим процессорам в линейке, которые, как правило, дают жизнь сразу нескольким недорогим видеокартам. Представленные сегодня новинки – GeForce GTX 750 и GeForce GTX 750 Ti – основаны на чипе GM107, являющимся наследником GK107.


Второе поколение графических процессоров на архитектуре «Maxwell», будет представлено во второй половине этого года, и, предположительно, должно состоять, из трёх чипов – GM200, GM204 и GM206. Производиться они будут уже по-новому, 20 нм технологическому процессу. Также предполагается, что архитектура второго поколения «Maxwell», претерпит дополнительные изменения, но, как и в первом поколении, основной акцент будет сделан на повышении показателей энергоэффективности.

Часто приходится слышать мнение, мол, «кому нужна эта ваша энергоэффективность? пусть лучше сделают высокопроизводительный чип!». Однако в действительности дело обстоит таким образом, что именно энергоэффективность является ключом к высокой производительности. Сэкономленные ватты можно разменять на повышение частот или увеличение числа исполнительных устройств. Например, если при равной производительности чип A потребляет 300 ватт, а чип N – 150 ватт, то производитель чипа N может выпустить версию с большим числом исполнительных устройств, повысить частоты, и значительно опередить по производительности чип A, который уже достиг пределов разумного теплового и энергетического пакета, и не имеет резервов для наращивания производительности. Кроме того, меньшее энергопотребление при равной производительности, позволяет выпустить видеокарту с лучшими потребительскими характеристиками. Можно использовать менее мощную систему питания и охлаждения, что положительно скажется на надёжности и уровне шума.

Борьба за энергоэффективность незримо продолжается уже много лет, но в последние годы, с замедлением темпов перехода на новые нормы производства полупроводников, она начала выходить на первый план. Когда нет надежды на скорый переход к более «тонкому» технологическому процессу, приходится искать резервы роста производительности своих топовых решений в увеличении частот, что невозможно без оптимизаций архитектуры, направленных на повышение энергоэффективности. Да и переход на новый технологический процесс уже давно не панацея, по той простой причине, что плотность упаковки транзисторов растёт быстрее, чем снижается удельное потребление на каждый транзистор. Следовательно, если не повышать энергоэффективность архитектуры, тепловыделение на квадратный миллиметр чипа будет расти, и очень быстро станет фактором, сдерживающим рост тактовых частот, и в свою очередь, производительности.

NVIDIA утверждает, что «Maxwell» был спроектирован для достижения экстремальных показателей производительности на ватт. Если принять к сведению, что «Maxwell» проектировался, в первую очередь, для будущего 20 нм технологического процесса, то ничего удивительного в таких заявлениях нет. Два года назад Intel представила свои процессоры Ivy Bridge, использующие 22 нм технологический процесс. Ключевым отличием данных норм производства стало использование технологии «3D tri-gate», то есть размещение транзисторов не в плоскости, а в объёме. Транзисторы стали условно трёхмерными. Аналогичный переход на 3D-транзисторы собирается совершить TSMC на своём 20-нм технологическом процессе. Это позволит существенно повысить плотность компоновки транзисторов. Но вместе с ней возрастёт и тепловыделение на площадь. Поэтому, если на текущем, 28 нм технологическом процессе, решения на базе «Maxwell» продемонстрируют выдающуюся экономичность и низкий нагрев, то с переходом на 20 нм и выпуском более производительных чипов, использующих в разы большее число транзисторов, эти показатели могут стать просто обычными.

После того, как стало понятно, для чего NVIDIA постаралась существенно повысить энергоэффективность новой архитектуры - Maxwell 1.0, пора перейти к рассмотрению того, как ей это удалось. Для начала посмотрим на общую схему чипа GM107:


На первый взгляд, никаких кардинальных изменений относительно предыдущей архитектуры «Kepler», нет. На схеме виден уже привычный GigaThread Engine, кэш второго уровня, блоки растровых операций и GPC, содержащий пять SMM (Maxwell SM). Но, дьявол привычно скрывается в деталях. Поскольку основной акцент при разработке «Maxwell» был сделан на значительное повышение энергоэффективности, то все изменения, так или иначе, подчинены этой цели. Кэш второго уровня, по сравнению с предшественником GK107, вырос в 8 раз, с 256 Кбайт до 2 Мбайт. Это позволило значительно увеличить объём данных, кэшируемых как для чтения, так и для записи, а значит реже использовать контроллер памяти, а также повысить вероятность нахождения нужных данных в кэше. Вот так вот решение, направленное на нелюбимую многими поклонниками разгона энергоэффективность, позволяет повышать не только эту самую энергоэффективность, но и общий уровень быстродействия чипа.

Основные же отличия «Maxwell» от «Kepler» кроются глубже, в новых SM, переименованных теперь из SMX в SMM. GM107 имеет один GPC, уже привычный для решений младшего уровня. Но вот количество SMM в нём достигает пяти штук. В случае с «Kepler», напомним, на один GPC приходилось не более трёх SMX. Такое решение позволяет сэкономить на управляющей логике, которой, в пересчёте на один SM, теперь требуется меньше. Но основные изменения, как уже было сказано выше, коснулись самих SMM.


«Разделяй и властвуй» – именно под этим девизом, по всей видимости, происходил процесс проектирования концепции SMM. Перечислим основные отличия от «Kepler»:

Перепроектирована система кэшей. В «Kepler» блок 64 Кбайт делили между собой кэш первого уровня и общая память (shared memory), а кэш текстур был отдельным массивом. В «Maxwell» общая память (shared memory) полностью и единолично занимает 64 Кбайт памяти, а вот кэш текстур и кэш первого уровня конкурируют между собой за ресурсы одного массива памяти.
В отличие от «Kepler», где фактически все ресурсы в SMX были общими, SMM делится на несколько групп устройств, с жёсткой привязкой контрольной логики к массиву исполнительных устройств. Это позволило значительно сэкономить на внутренних соединениях, упростить контролирующую логику, снизив потребление энергии.
Как и в «Kepler», один SMM содержит 4 Warp Scheduler, но теперь они управляют не единым массивом из 192 SP, а четырьмя отдельными массивами по 32 SP на каждый Warp Scheduler. Следовательно, количество SP в одном SMM сократилось до 128 штук. Но, благодаря оптимизациям управляющей логики и самих SP, удалось добиться повышения КПД каждого SP примерно на 35%. Таким образом, производительность одного SMM лишь немного уступает производительности одного SMX, но вот энергии потребляет, практически вдвое меньше, и состоит из меньшего числа транзисторов. Регистровый файл имеет тот же совокупный размер, что и в «Kepler» – 65536 32-битных записей, но также разбит на 4 блока, по 16384 записей.



Каждый Warp Scheduler теперь имеет буфер инструкций, который является промежуточным звеном между кэшем инструкций и самим Warp Scheduler. Это также позволяет повысить производительность, одновременно снизив совокупное потребление энергии.
Массив текстурных блоков был уменьшен вдвое по сравнению с «Kepler», с 16 штук в SMX до 8 штук в SMM. Кроме того, эти 8 текстурных блоков разбиты на два квада, каждый квад (4 штуки), имеет собственный текстурный кэш и кэш первого уровня, которые, напомним, теперь совмещены в одном массиве памяти. Один квад текстурных блоков делят между собой два “процессинговых блока”, состоящих из 32 SP.

Хорошо заметно, что несмотря на внешнее сходство с «Kepler», «Maxwell» имеет множество отличий от предыдущей архитектуры. Большое количество блоков подверглось различным изменениям, количество внутричиповых связей уменьшено, крупные блоки раздробили на более мелкие, выстроена жёсткая иерархия и выполнена привязка различных исполнительных устройств к ресурсам. По заверениям NVIDIA, это позволило в два раза повысить энергоэффективность новой архитектуры, и поднять КПД исполнительных устройств. Фактически, GM107, в лице старшего решения GeForce GTX 750 Ti, обладая меньшим числом исполнительных устройств и меньшей пиковой теоретической производительностью, чем GeForce GTX 650 Ti, превосходит его в реальной производительности. При этом, потребляет новинка почти вдвое меньше своего предшественника, 60 ватт, против 110 ватт. И если это так, то это действительно отличный результат! Ведь Kepler в своё время продемонстрировал очень высокий уровень энергоэффективности, и поднять этот показатель вдвое в рамках одного технологического процесса было весьма непростой задачей.

Теперь же самое время перейти от теории к практике, и проверить заявления NVIDIA на деле.

2. Обзор видеокарты NVIDIA GeForce GTX 750 Ti



технические характеристики и рекомендованная стоимость

Технические характеристики и рекомендованная стоимость видеокарт NVIDIA GeForce GTX 750 Ti и GTX 750 приведены в таблице в сравнении с эталонными вариантами NVIDIA GeForce GTX 650 Ti BOOST, NVIDIA GeForce GTX 650 Ti и AMD Radeon R7 260X:



дизайн и особенности печатной платы

Эталонный вариант видеокарты NVIDIA GeForce GTX 750 Ti имеет длину всего 145 мм, и в этом не отличается от своего предшественника в лице GeForce GTX 650 Ti:


А вот толщина видеокарты чуть меньше и составляет 34 мм:


Каких-либо отличий в плане выходов здесь также нет: DVI-I и DVI-D (оба Dual-Link) и mini HDMI версии 1.4a:


Шестиконтактный разъём дополнительного питания исчез с печатной платы, хотя контактная площадка для него осталась:


Это не удивительно, ведь заявленная мощность NVIDIA GeForce GTX 750 Ti составляет всего 60 ватт против прежних 110 ватт у GTX 650 Ti, а значит такой видеокарты будет достаточно мощности, подаваемой по PCI-Express разъёму материнской платы (75 ватт). Мощность рекомендованного блока питания для системы с одной такой видеокартой составляет всего 300 ватт. Работа в режимах SLI для NVIDIA GeForce GTX 750 Ti не предусмотрена.

Инженеры NVIDIA, не стали «мудрствовать лукаво» и взяли для GTX 750 Ti печатную плату видеокарты GeForce GTX 650 Ti:


Напомним, что здесь применена трёхфазная система питания, две из которых приходятся на графический процессор, а одна – на память и силовые цепи:


Кристалл графического процессора GM107 «Maxwell» имеет площадь всего 148 кв.мм, а его подложка лишена защитной рамки. Впрочем, вероятно серийные видеокарты будут оснащаться этой крайне полезной деталью, как это было (и ещё есть) с GTX 650 Ti:


Микросхема относится к ревизии А2 и, судя по маркировке, выпущена на 49-й неделе 2013 года (начало декабря). Базовая частота графического процессора в 3D-режиме равна 1020 МГц, а в форсированном режиме может достигать 1085 МГц. Вместе с тем, по данным мониторинга частота графического процессора достигала 1163 МГц. Напряжение оказалось равно 1,168 В, но вполне вероятно, что серийные продукты могут функционировать на иных напряжениях. Добавим, что при переходе в 2D-режим частота GPU снижается до 135 МГц вместо прежних 324 МГц на GeForce GTX 650 Ti, а напряжение опускается до 0,95 В.

Качество ASIC нашего экземпляра процессора GeForce GTX 750 Ti оказалось равно 74,0%:


NVIDIA GeForce GTX 750 Ti оснащается двумя гигабайтами видеопамяти стандарта GDDR5 в FCBGA-упаковке. производства компании SK Hynix (маркировка H5GC4H24MFR-T2C:


Теоретическая эффективная частота таких микросхем в 3D-режиме составляет 5000 МГц при напряжении 1,35 В или 6000 МГц при напряжении 1,5 В. В случае с GeForce GTX 750 Ti, скорее всего, используется второй вариант, так как частота задана на отметке 5400 МГц, а теоретическая пропускная способность при 128-битной ширине шины обмена с памятью равна 86,4 Гбайт/сек. То есть в плане видеопамяти у GeForce GTX 750 Ti нет никаких отличий от GeForce GTX 650 Ti.

Последняя доступная на момент подготовки статьи версия утилиты GPU-Z уже знакома с характеристиками GeForce GTX 750 Ti:


И даже способна считывать BIOS этой видеокарты, который мы традиционно прикладываем к обзору.

система охлаждения – эффективность и уровень шума

Эталонный вариант NVIDIA GeForce GTX 750 Ti оснащается предельно простой системой охлаждения, состоящей из маленького алюминиевого радиатора и установленного над ним пластикового вентилятора:


Вентилятор закрепляется четырьмя винтами напрямую к радиатору и благодаря этому снимается довольно просто:


Это оказалась 60-мм модель (реальный диаметр 55 мм) на шарикоподшипнике FA06010H12BNA компании Cooler Master:


Никакого, разумеется, PWM-управления. Скорость изменяется только напряжением. Мониторинга оборотов нет.

Для проверки температурного режима работы видеокарты NVIDIA GeForce GTX 750 Ti в качестве нагрузки мы использовали пять циклов теста весьма ресурсоёмкой игры Aliens vs. Predator (2010) при максимальном качестве графики в разрешении 2560х1440 пикселей с анизотропной фильтрацией уровня 16х, но без активации MSAA-сглаживания:


Для мониторинга температур и всех прочих параметров применялись программа MSI Afterburner версии 3.0.0 beta 18 и утилита GPU-Z версии 0.7.7. Все тесты проводились в закрытом корпусе системного блока, конфигурацию которого вы сможете увидеть в следующем разделе статьи, при средней комнатной температуре около 25 градусов Цельсия.

Несмотря на всю простоту кулера эталонной NVIDIA GeForce GTX 750 Ti, уровень тепловыделения этой видеокарты столь скромен, что даже алюминиевой болванки с маленьким вентилятором оказалось достаточно, чтобы не только удержать температуру GPU в пределах 70 градусов Цельсия, но и работать вполне комфортно по уровню шума:


Автоматический режим

При выставленной вручную максимальной скорости вентилятора температура графического процессора снижается на 8 градусов Цельсия до итоговых 60 градусов Цельсия:


Максимальная скорость

Что касается уровня шума, то он действительно невысок. В автоматическом режиме регулировки кулер NVIDIA GeForce GTX 750 Ti едва выделяется на фоне тихого системного блока.

оверклокерский потенциал

Говоря откровенно, из-за серьёзных ограничений по времени подготовки материала про NVIDIA GeForce GTX 750 Ti, в полной мере изучить её оверклокерский потенциал мы не успели. Тем не менее, без увеличения напряжения на ядре и «выкручивания» скорости вентилятора кулера на максимум частоту графического процессора удалось повысить на 135 МГц (+13,2%), а частоту видеопамяти – на 1260 эффективных мегагерц (+23,3%):


Итоговые частоты видеокарты после разгона составили 1155-1220/6660 МГц:


При этом, по данным мониторинга частота графического процессора в boost-режиме достигала 1300 МГц:


Температура графического процессора разогнанной видеокарты повысилась на 1 градус Цельсия в пике нагрузки, а максимальная мощность вентилятора выросла с 49 до 50%. На наш взгляд, для первого пресс-семпла NVIDIA GeForce GTX 750 Ti продемонстрировала очень неплохой разгон.

галерея серийных моделей видеокарт GeForce GTX 750 Ti

Одновременно с анонсом GeForce GTX 750 Ti почти все производители представили свои оригинальные модели. Мы надеемся со многими из них постепенно познакомить вас, а сегодня приведём фото некоторых из них:









GeForce Experience

Новая GeForce GTX 750 Ti, конечно же, поддерживается комплексом утилит NVIDIA GeForce Experience, совсем недавно обновившимся до версии 1.8.2:


GeForce Experience способна автоматически подбирать оптимальные настройки графики в играх, в соответствии с конфигурацией системы. Одновременно утилита обязательно напомнит о выходе новой версии драйверов:


Кроме того, там же можно найти краткую информацию о системе…


…и настроить необходимые параметры:


Однако наиболее интересной, на наш взгляд, является возможность записи игрового процесса ShadowPlay:


С помощью встроенного GPU GeForce GTX 600 и GTX 700 аппаратного H.264-кодера NVENC, ShadowPlay способна сохранять до 20 минут игрового процесса в разрешении 1920x1080 пикселей с частотой кадров 60 FPS в буфер на жёстком диске в формате MP4, который затем можно будет редактировать или публиковать в сети.

3. Тестовая конфигурация, инструментарий и методика тестирования


Тестирование производительности видеокарт было проведено на системе следующей конфигурации:

Системная плата: Intel Siler DX79SR (Intel X79 Express, LGA 2011, BIOS 0590 от 17.07.2013);
Центральный процессор: Intel Core i7-3970X Extreme Edition 3,5/4,0 ГГц (Sandy Bridge-E, C2, 1,1 В, 6x256 Kбайт L2, 15 Мбайт L3);
Система охлаждения CPU: Phanteks PH-TC14PЕ (2xCorsair AF140, 900 об/мин);
Термоинтерфейс: ARCTIC MX-4;
Видеокарты:

HIS Radeon R9 270 iPower IceQ X² Boost Clock 2 Гбайт 952/5600 МГц;
MSI GeForce GTX 650 Ti BOOST Twin Frozr III 2 Гбайт 1033-1098/6008 МГц;
NVIDIA GeForce GTX 750 Ti 2 Гбайт 1020-1085/5400 МГц;
AMD Radeon R7 260X 2 Гбайт 1100/6500 МГц;
ASUS Radeon HD 7790 DirectCU II 1 Гбайт 1075/6400 МГц;

Оперативная память: DDR3 4x8 Гбайт G.SKILL TridentX F3-2133C9Q-32GTX (XMP 2133 МГц, 9-11-11-31, 1,6 В);
Системный диск: SSD 256 Гбайт Crucial m4 (SATA-III, CT256M4SSD2, BIOS v0009);
Диск для программ и игр: Western Digital VelociRaptor (SATA-II, 300 Гбайт, 10000 об/мин, 16 Мбайт, NCQ) в коробке Scythe Quiet Drive 3,5";
Архивный диск: Samsung Ecogreen F4 HD204UI (SATA-II, 2 Тбайт, 5400 об/мин, 32 Мбайт, NCQ);
Звуковая карта: Auzen X-Fi HomeTheater HD;
Корпус: Antec Twelve Hundred (передняя стенка – три Noiseblocker NB-Multiframe S-Series MF12-S2 на 1020 об/мин; задняя – два Noiseblocker NB-BlackSilentPRO PL-1 на 1020 об/мин; верхняя – штатный 200-мм вентилятор на 400 об/мин);
Панель управления и мониторинга: Zalman ZM-MFC3;
Блок питания: Corsair AX1200i (1200 Вт), 120-мм вентилятор;
Монитор: 27" Samsung S27A850D (DVI-I, 2560х1440, 60 Гц).

Даже при своей рекомендованной стоимости 5490 руб., за которую она, скорее всего, не будет продаваться первое время, новая GeForce GTX 750 Ti попадает в весьма серьёзную кампанию. В числе её конкурентов вовсе не GeForce GTX 650 Ti, вместо которой она и выходит, а более производительная GeForce GTX 650 Ti BOOST стоимостью около 5000 рублей. Её мы и включили в тестирование, вкупе с ещё более производительной и дорогой Radeon R9 270, которую мы будем рассматривать в качестве следующей ступеньки по производительности. Эти видеокарты представлены продуктами компаний HIS и MSI на их номинальных частотах:




Кроме того, в тестирование включена немногим более дешёвая Radeon R7 260X 2 Гбайт в эталонном исполнении, и ASUS Radeon HD 7790 DirectCU II 1 Гбайт на немного повышенных заводских частотах:




Таким образом, в сегодняшнем тестировании будут принимать участие сразу пять видеокарт, а героиня обзора протестирована не только на номинальных частотах, но и при достигнутом нами разгоне.

Для снижения зависимости производительности видеокарт от скорости платформы, 32-нм шестиядерный процессор при множителе 48, опорной частоте 100 МГц и активированной функции Load-Line Calibration был разогнан до 4,8 ГГц при повышении напряжения в BIOS материнской платы до 1,38 В:


Технология Hyper-Threading активирована. При этом 32 Гбайт оперативной памяти функционировали на частоте 2,133 ГГц с таймингами 9-11-11-20_CR1 при напряжении 1,6125 В.

Тестирование, начатое 14 февраля 2014 года, было проведено под управлением операционной системы Microsoft Windows 7 Ultimate x64 SP1 со всеми критическими обновлениями на указанную дату и с установкой следующих драйверов:

чипсет материнской платы Intel Chipset Drivers – 9.4.4.1006 WHQL от 21.09.2013;
библиотеки DirectX End-User Runtimes, дата выпуска – 30 ноября 2010 года;
драйверы видеокарт на графических процессорах AMD – AMD Catalyst 14.1 Beta 1.6 (13.350.1005.0) от 18.12.2013;
драйверы видеокарт на графических процессорах NVIDIA – GeForce 334.69 Beta от 19.01.2014.

Учитывая скромную производительность тестируемых сегодня видеокарт, они были проверены только в разрешении 1920х1080 пикселей. Для тестов использовались два режима качества графики: «Quality + AF16x» – качество текстур в драйверах по-умолчанию с включением анизотропной фильтрации уровня 16х, и «Quality + AF16x + MSAA 4х» с включением анизотропной фильтрации уровня 16х и полноэкранного сглаживания степени 4x. В отдельных играх, в силу специфики игровых движков, были использованы другие алгоритмы сглаживания, что будет указано далее в методике и на диаграммах. Включение анизотропной фильтрации и полноэкранного сглаживания выполнялось непосредственно в настройках игр. Если же данные настройки в играх отсутствовали, то параметры изменялись в панели управления драйверов Catalyst или GeForce. Там же была принудительно отключена вертикальная синхронизация. Кроме указанного, никаких дополнительных изменений в настройки драйверов не вносилось.

Видеокарты были протестированы в двух графических тестах и двенадцати играх, обновлённых до последних версий на дату начала подготовки материала:

3DMark (2013) (DirectX 9/11) – версия 1.2.250.0, тестирование в сценах «Cloud Gate», «Fire Strike» и «Fire Strike Extreme»;
Unigine Valley Bench (DirectX 11) – версия 1.0, максимальные настройки качества, AF16x и(или) MSAA 4x, разрешение 1920х1080;
Total War: SHOGUN 2 – Fall of the Samurai (DirectX 11) – версия 1.1.0, встроенный тест (битва при Sekigahara) на максимальных настройках качества графики и использовании в одном из режимов MSAA 8x;
Sniper Elite V2 Benchmark (DirectX 11) – версия 1.05, использовался Adrenaline Sniper Elite V2 Benchmark Tool v1.0.0.2 BETA максимальные настройки качества графики («Ultra»), Advanced Shadows: HIGH, Ambient Occlusion: ON, Stereo 3D: OFF, Supersampling: OFF, двойной последовательный прогон теста;
Sleeping Dogs (DirectX 11) – версия 1.5, использовался Adrenaline Action Benchmark Tool v1.0.2.1, максимальные настройки качества графики по всем пунктам, Hi-Res Textures pack установлен, FPS Limiter и V-Sync отключены, двойной последовательный прогон теста с суммарным сглаживанием на уровне «Normal» и на уровне «High»;
Hitman: Absolution (DirectX 11) – версия 1.0.447.0, встроенный тест при настройках качества графики на уровне «Ultra», тесселяция, FXAA и глобальное освещение включены.
Crysis 3 (DirectX 11) – версия 1.2.0.1000, все настройки качества графики на максимум, степень размытости – средняя, блики включены, режимы с FXAA и с MSAA4x сглаживанием, двойной последовательный проход заскриптованной сцены из начала миссии «Swamp» продолжительностью 110 секунд;
Tomb Raider (2013) (DirectX 11) – версия 1.1.748.0, использовался Adrenaline Action Benchmark Tool, настройки качества на уровне «Ultra», V-Synс отключён, режимы с FXAA и с 2xSSAA сглаживанием, технология TressFX активирована, двойной последовательный проход встроенного в игру теста;
BioShock Infinite (DirectX 11) – версия 1.1.24.21018, использовался Adrenaline Action Benchmark Tool с настройками качества «High» и «Ultra», двойной прогон встроенного в игру теста;
Metro: Last Light (DirectX 11) – версия 1.0.0.15, использовался встроенный в игру тест, настройки качества графики и тесселяции на уровне «High», технология Advanced PhysX выключена, тесты с- и без SSAA-сглаживания, двойной последовательный проход сцены «D6».
GRID 2 (DirectX 11) – версия 1.0.85.8679, использовался встроенный в игру тест, настройки качества графики на максимальный уровень по всем позициям, тесты с- и без MSAA4x сглаживания, восемь машин на трассе «Чикаго»;
Company of Heroes 2 (DirectX 11) – версия 3.0.0.12358, двойной последовательный прогон встроенного в игру теста при максимальных настройках качества графики и физических эффектов;
Batman: Arkham Origins (DirectX 11) – версия 1.0 update 8, настройки качества на уровне «Ultra», V-Synс отключён, все эффекты активированы, все функции «DX11 Enhanced» задействованы, Hardware Accelerated PhysX = Normal, двойной последовательный проход встроенного в игру теста;
Battlefield 4 (DirectX 11) – версия 1.4, все настройки качества графики на «Ultra», двойной последовательный проход заскриптованной сцены из начала миссии «TASHGAR» продолжительностью 110 секунд;

Как видим, в отдельных играх не были использованы максимальные настройки качества графики, чтобы сохранить FPS на хотя бы приемлемом для игры уровне.

Если в играх реализована возможность фиксации минимального числа кадров в секунду, то оно также отражалось на диаграммах. Каждый тест проводился дважды, за окончательный результат принималось лучшее из двух полученных значений, но только в случае, если разница между ними не превышала 1%. Если отклонения прогонов тестов превышали 1%, то тестирование повторялось ещё, как минимум, один раз, чтобы получить достоверный результат.

4. Результаты тестов производительности и их анализ


На диаграммах результаты всех видеокарт NVIDIA GeForce отражены светло-зелёным цветом, а результаты AMD Radeon – привычной красной заливкой. Видеокарты расположены сверху-вниз в порядке убывания их рекомендованной стоимости.

3DMark (2013)


В первом полусинтетическом тесте новая NVIDIA GeForce GTX 750 Ti выступает довольно уверенно. Она оказывается чуть быстрее AMD Radeon R7 260X, немного медленнее MSI GeForce GTX 650 Ti BOOST, и без труда опережает последнюю при разгоне. Впереди остаётся только более дорогая Radeon R9 270 в исполнении HIS.

Unigine Valley Bench

Иначе складывается ситуация в тесте Unigine Valley:


Опережая обе видеокарты на графических процессорах AMD, новая NVIDIA GeForce GTX 750 Ti заметно отстаёт от GeForce GTX 650 Ti BOOST, и, более того, не может догнать её при разгоне. В свою очередь, видеокарта MSI в этом тесте демонстрирует такую же производительность, как и Radeon R9 270 производства HIS.

Total War: SHOGUN 2 – Fall of the Samurai

Total War: SHOGUN 2 – Fall of the Samurai продемонстрировала практически общую для всего тестирования картину:


NVIDIA GeForce GTX 750 Ti на номинальных частотах немного опережает AMD Radeon R7 260X, и на 8-11% отстаёт от GeForce GTX 650 Ti BOOST в версии MSI. Однако, разогнав новую видеокарту до частот 1155/6660 МГц производительность удаётся поднять до уровня оригинальной GeForce GTX 650 Ti BOOST с заводским разгоном. Неплохо.

Sniper Elite V2 Benchmark


Преимущество NVIDIA GeForce GTX 750 Ti над Radeon R7 260X в Sniper Elite V2 выше, нежели в предыдущей игре и в режиме без активации сглаживания достигает 14%. В то же время, и с GeForce GTX 650 Ti BOOST разница велика, только уже не в пользу NVIDIA GeForce GTX 750 Ti. Причём, в этой игре разгон новинки не помогает ей опередить BOOST-версию 650 Ti.

Sleeping Dogs

Зато в Sleeping Dogs это удаётся сделать без особого труда и шума:


Добавим, что AMD Radeon R7 260X новая NVIDIA GeForce GTX 750 Ti «привозит» 4-6%.

Hitman: Absolution


В Hitman: Absolution, несмотря на более подходящий для видеокарт AMD движок игры, NVIDIA GeForce GTX 750 Ti не уступает Radeon R7 260X. В сравнении с MSI GeForce GTX 650 Ti BOOST новинка также выглядит молодцом, поскольку в номинальном режиме работы их производительность практически одинакова, а при разгоне GTX 750 Ti умудряется даже лидировать.

Crysis 3

Crysis 3 демонстрирует нам вполне типичную для сегодняшнего тестирования расстановку сил между видеокартами:


Преимущество NVIDIA GeForce GTX 750 Ti над Radeon R7 260X на номинальных частотах этих видеокарт мизерно, как незначительно и отставание разогнанной GTX 750 Ti от MSI GeForce GTX 650 Ti BOOST. В целом производительность тестируемых видеокарт в Crysis 3 удручающе низка.

Tomb Raider (2013)

Tomb Raider больше подходит видеокартам на графических процессорах AMD, которые в этом тесте идут вровень с равностоимостными GeForce, а старшая R9 270 лидирует:


При разгоне NVIDIA GeForce GTX 750 Ti опережает BOOST-версию GeForce GTX 650 Ti.

BioShock Infinite


Из всех игр тестирования BioShock Infinite отметилась тем, что прирост производительности NVIDIA GeForce GTX 750 Ti при разгоне здесь максимален и достигает 21,6-23,8% в сравнении с номинальным режимом работы видеокарты. За счёт этого новинка опережает MSI GeForce GTX 650 Ti BOOST в режиме без использования сглаживания и равна ей при активации MSAA4x.

Metro: Last Light

Напомним, что Metro: Last Light мы тестировали без технологии «Advanced PhysX» и на упрощённых настройках качества графики. Тем не менее, производительность видеокарт в данной игре по-прежнему оставляет желать лучшего:


NVIDIA GeForce GTX 750 Ti вновь опережает Radeon R7 260X на 13-22%, на 8% отстаёт от MSI GeForce GTX 650 Ti BOOST и тут же на 4-5% быстрее при разгоне. Вновь подтверждается прекрасная масштабируемость новинки при разгоне, несмотря на 128-битную шину памяти и скромный по числу шейдерных процессоров GPU.

GRID 2


В GRID 2 бороться с AMD сложно, но проигрыш NVIDIA GeForce GTX 750 Ti Radeon R7 260X минимальный, а разгон выводит новинку на второе место вслед за Radeon R9 270 производства HIS.

Company of Heroes 2

Однако наиболее сокрушительное поражение терпит NVIDIA в игре Company of Heroes 2:


Здесь отметим, что NVIDIA GeForce GTX 750 Ti на номинальных частотах идёт вровень с MSI GeForce GTX 650 Ti BOOST, логично, что после разгона до частот 1155/6660 МГц без труда опережает её.

Batman: Arkham Origins

Реванш не заставил себя долго ждать – в Batman: Arkham Origins мы уже можем наблюдать привычную для сегодняшнего тестирования картину:



Battlefield 4

Не выпадают из общего ряда и результаты тестирования видеокарт в игре Battlefield 4:


NVIDIA GeForce GTX 750 Ti на 5-7% быстрее Radeon R7 260X, примерно на 6% медленнее MSI GeForce GTX 650 Ti BOOST и на 6% быстрее её при разгоне до частот 1155/6660 МГц.

В завершении основного раздела с тестированием – итоговая таблица с результатами тестов:


Теперь у нас на очереди сводные диаграммы.

5. Сводные диаграммы


Прежде всего сравним производительность NVIDIA GeForce GTX 750 Ti 2 Гбайт и AMD Radeon R7 260X 2 Гбайт на номинальных частотах этих видеокарт. За основу приняты результаты вышедшей раньше R7 260X, а производительность GTX 750 Ti показана отклонениями от неё:


NVIDIA GeForce GTX 750 Ti проигрывает в режиме с использованием сглаживания игры BioShock Infinite, GRID 2 и Company of Heroes 2, где поражение новинки наиболее существенное. В то же время, победы одержаны в Metro: Last Light, Total War: SHOGUN 2, Sniper Elite V2, Sleeping Dogs, режиме без сглаживания Hitman: Absolution, Batman: Arkham Origins и Battlefield 4. В оставшихся играх производительность двух этих видеокарт практически не отличается. Если вывести среднее геометрическое по всем тестам, то NVIDIA GeForce GTX 750 Ti 2 Гбайт быстрее AMD Radeon R7 260X 2 Гбайт на 5,6% в режимах без использования сглаживания и на 2,5% при его активации.

То, что NVIDIA GeForce GTX 750 Ti опережает GeForce GTX 650 Ti у нас сомнений не вызывает, куда интереснее, на наш взгляд, сравнение новинки с практически прямым ценовым конкурентом в лице GeForce GTX 650 Ti BOOST. Таких видеокарт сейчас на рынке огромный ассортимент и практически все они идут с заводским разгоном. С оригинальной видеокартой MSI мы и сравнили GeForce GTX 750 Ti:


Здесь практически тотальный проигрыш, за исключением одного тестового режима Hitman: Absolution и Company of Heroes 2, а в среднем по всем тестам NVIDIA GeForce GTX 750 Ti уступает оригинальной MSI GeForce GTX 650 Ti BOOST 8,6% в режимах без АА и 12,1% при его активации.

Как мы с вами помним, первый же экземпляр NVIDIA GeForce GTX 750 Ti у нас разогнался очень хорошо. Базовую частоту ядра удалось поднять на 135 МГц или 13,2%, а частоту видеопамяти – на 23,3%. Давайте посмотрим, как масштабируется производительность этой видеокарты при её разгоне:


Прекрасно масштабируется, что тут ещё сказать? В худшем случае производительность возрастает на 8,3%, а в лучшем сразу на 23,8%. В среднем же по всем играм в режимах без использования сглаживания производительность NVIDIA GeForce GTX 750 Ti при разгоне возрастает на 12,9%, а при включении сглаживания – на 14,1%. Впрочем, режимы с использованием сглаживания не являются приемлемыми для видеокарт с 128-битной шиной памяти, поскольку производительность при таких настройках очень низка.

И раз NVIDIA GeForce GTX 750 Ti уж так хорошо разгоняется и масштабируется при разгоне, то самое время проверить, как она при повышенных частотах графического процессора и видеопамяти выглядит на фоне оригинальной MSI GeForce GTX 650 Ti BOOST:


Как видим, разогнанной NVIDIA GeForce GTX 750 Ti почти везде удалось превратить отставание в преимущество. В исключениях остались Sniper Elite V2, непокорённый Crysis 3 и Batman: Arkham Origins. Разумеется, GeForce GTX 650 Ti BOOST также неплохо разгоняется.

6. Энергопотребление


Измерение энергопотребления системы с различными видеокартами осуществлялось с помощью многофункциональной панели Zalman ZM-MFC3, которая показывает потребление системы «от розетки» в целом (без учёта монитора). Измерение было проведено в 2D-режиме, при обычной работе в Microsoft Word или «интернет-сёрфинге», а также в 3D-режиме. В последнем случае нагрузка создавалась с помощью четырёх последовательных циклов вступительной сцены уровня «Swamp» из игры Crysis 3 в разрешении 2560х1440 пикселей при максимальных настройках качества графики, но без использования сглаживания MSAA.

Давайте сравним уровень энергопотребления систем с протестированными сегодня видеокартами:


Как и следовало ожидать, система с NVIDIA GeForce GTX 750 Ti оказалась наиболее экономичной среди всех остальных участников тестирования. Разница с конфигурацией, в которой установлена MSI GeForce GTX 650 Ti BOOST составила 72 ватта в пике нагрузки, хотя понятно, что не вся эта мощность приходится только на видеокарту. Тем не менее, очевидно, что система с новой видеокартой на графическом процессоре «Maxwell» экономичнее и предшественников, и конкурентов. При разгоне видеокарты энергопотребление возрастает на 15 ватт в пике нагрузки. В 2D-режиме все варианты потребляют электрической мощности примерно одинаково. Добавим также, что если вы вдруг планируете установить NVIDIA GeForce GTX 750 Ti в конфигурацию такой же мощности, как у нашего тестового стенда, то рекомендованного NVIDIA 300-ваттного блока питания будет явно недостаточно даже без учёта разгона видеокарты. А вот конфигурации поскромнее, скорее всего, вполне должны уложиться в указанный NVIDIA предел мощности.

Заключение


С уверенностью можно сказать, что новая NVIDIA GeForce GTX 750 Ti на графической архитектуре «Maxwell» свою задачу в полной мере выполнила. GM107 оказался чрезвычайно эффективным чипом с непревзойдённым для одноклассников уровнем производительности на ватт. Шутка ли, но в сравнении с GeForce GTX 650 Ti, имеющей большее число шейдерных процессоров и текстурных блоков, энергопотребление снизилось почти вдвое, а производительность возросла. Более того, невзирая на очевидные ограничения по питанию, у нас видеокарта прекрасно разогналась, достигнув и даже превзойдя BOOST-версию GeForce GTX 650 Ti в оригинальном исполнении MSI. Немаловажно, что низкое потребление и тепловыделение позволят производителям создавать компактные и тихие видеокарты, но всё же хотелось бы скорее познакомиться с видеокартами на второй версии «Maxwell».

Вместе с тем, хотелось бы отметить, что привычного нам когда-то роста производительности «за те же деньги» с появлением нового поколения видеокарт и GeForce GTX 750 Ti, в частности, пока не произошло. Со своей рекомендованной стоимостью $149 новинка выходит в чрезвычайно насыщенный различными оригинальными решениями средне-бюджетный сегмент рынка видеокарт. Здесь и одноклассники GeForce GTX 650 Ti (включая BOOST-версии), и Radeon R7 260X с R9 270, и наисвежайший Radeon R7 265, а также пусть и старенькие, но всё ещё продающиеся Radeon HD 7850. Будем надеяться, что розничная стоимость новинки не окажется завышенной, так как одной энергоэффективностью пользователей сегодня уже «не возьмёшь».

Субъективное мнение автора: откровенно говоря, GeForce GTX 750 Ti, как и GeForce GTX 650 Ti, не является в прямом смысле игровой видеокартой, и для своей скромной производительности получилась, как бы это помягче сказать, дороговатой. В идеале GeForce GTX 750 Ti мне видится в таком же компактном дизайне, исключительно с радиатором без вентилятора, и стоимостью… в пределах 100 долларов США. Вот такие видеокарты, определённо, ждал бы большой успех.

Благодарим российское представительство компании NVIDIA
и персонально Ирину Шеховцову,
за предоставленную на тестирование видеокарту
.